Final Project 1: Fabulous Fibonacci Numbers

by Elizabeth Gieseking


Leonardo of Pisa (c. 1170-1250), commonly known as Fibonacci, posed and solved the following problem involving an idealized rabbit population in his book Liber Abaci.

Suppose a newly-born pair of rabbits, one male and one female, are put in a field. Rabbits are able to mate at the age of one month so that at the end of its second month a female can produce another pair of rabbits. Suppose that our rabbits never die and that the female always produces one new pair (one male, one female) every month from the second month on. How many pairs will there be in one year? 

https://c2.staticflickr.com/6/5190/5636053756_653b220d6f_z.jpg

The table below illustrates what is happening.  When the rabbits are first placed in the field, their age is 0 months.  At this point they are immature and cannot mate, so at the end of month 1, there is still one pair of rabbits.  At that point they are mature and mate, so at the end of the second month there are 2 pairs of rabbits, one mature and one immature.  In each month after the first one, the number of immature rabbit pairs is equal to the number of mature rabbit pairs in the previous month.  Likewise the number of mature rabbit pairs is equal to the total number of rabbit pairs in the previous month.

 

Month

Mature Rabbit

Pairs

Immature Rabbit

Pairs

Total Rabbit Pairs

0

0

1

1

1

1

0

1

2

1

1

2

3

2

1

3

4

3

2

5

5

5

3

8

6

8

5

13

7

13

8

21

8

21

13

34

9

34

21

55

10

55

34

89

11

89

55

144

12

144

89

233

13

233

144

377

14

377

233

610

15

610

377

987

16

987

610

1597

17

1597

987

2584

18

2584

1597

4181

19

4181

2584

6765

20

6765

4181

10946

21

10946

6765

17711

22

17711

10946

28657

23

28657

17711

46368

24

46368

28657

75025

25

75025

46368

121393

The resulting sequence of number of rabbit pairs is the famous Fibonacci sequence.  The Fibonacci sequence is defined recursively as: .  By varying the starting values, we can create many similar sequences.  The most famous of these is the Lucas sequence in which .  Another variation is to the change the number of values being summed at each step.  For example, in a tribonacci sequence the three previous terms are summed at each step: .

A spreadsheet can be a useful tool for studying the Fibonacci sequence and other related sequences.  We simply enter the starting values and our formula and let the computer do the computation.  This is especially useful if we wish to examine ratios of Fibonacci numbers.  In the following table, we are examining the ratios of a Fibonacci number to a previous Fibonacci number.  In the first ratio, we are calculating , the ratio of the Fibonacci number to the previous term.  In the second ratio, we are calculating , the ratio of the Fibonacci number to the number two spots earlier in the sequence.  Likewise, in the third ratio, we are using terms three apart, and so on.

 

n

0

1

1

1

1

2

2

2

2

3

3

1.5

3

3

4

5

1.6666667

2.5

5

5

5

8

1.6000000

2.6666667

4

8

8

6

13

1.6250000

2.6000000

4.3333333

6.5

13

7

21

1.6153846

2.6250000

4.2000000

7

10.5

8

34

1.6190476

2.6153846

4.2500000

6.8

11.3333333

9

55

1.6176471

2.6190476

4.2307692

6.875

11

10

89

1.6181818

2.6176471

4.2380952

6.8461538

11.125

11

144

1.6179775

2.6181818

4.2352941

6.8571429

11.076923

12

233

1.6180556

2.6179775

4.2363636

6.8529412

11.095238

13

377

1.6180258

2.6180556

4.2359551

6.8545455

11.088235

14

610

1.6180371

2.6180258

4.2361111

6.8539326

11.090909

15

987

1.6180328

2.6180371

4.2360515

6.8541667

11.089887

16

1597

1.6180344

2.6180328

4.2360743

6.8540773

11.090277

17

2584

1.6180338

2.6180344

4.2360656

6.8541114

11.090128

18

4181

1.6180341

2.6180338

4.2360689

6.8540984

11.090185

19

6765

1.6180340

2.6180341

4.2360676

6.8541033

11.090163

20

10946

1.6180340

2.6180340

4.2360681

6.8541014

11.090172

21

17711

1.6180340

2.6180340

4.2360679

6.8541022

11.090169

22

28657

1.6180340

2.6180340

4.2360680

6.8541019

11.090170

23

46368

1.6180340

2.6180340

4.2360680

6.8541020

11.090170

24

75025

1.6180340

2.6180340

4.2360680

6.8541020

11.090170

25

121393

1.6180340

2.6180340

4.2360680

6.8541020

11.090170

We see that these values go up and down but converge fairly quickly.  The number for the first ratio looks familiar – it is  or the golden ratio.  The golden ratio is defined as: .  This can be rewritten as:   We can solve this using the quadratic formula to get:

We also quickly see that the second ratio  converges to .  Although the other ratios converge, it is not yet obvious how these values relate to   If we again examine the equations, we see that   Thus our second ratio is .  We can then verify that our third ratio is , our fourth ratio is , and our fifth ratio is

Now we know that the nth ratio converges to , but we do not have a reason yet.  Let’s go back to our equation for  and use it to generate other powers of .

We see two relationships between the powers of  and the Fibonacci series.

1.   The sequence of powers of  has the same structure as the Fibonacci sequence. 
Just as
, we see that

2.   When we express  as a function of , the coefficients are the Fibonacci numbers.

Interestingly, no matter what values we choose for  and  , the nth ratio will still converge to   The table below shows the Lucas numbers in which .

n

0

1

1

3

3

2

4

1.3333333

4

3

7

1.7500000

2.3333333

7

4

11

1.5714286

2.7500000

3.6666667

11

5

18

1.6363636

2.5714286

4.5000000

6

18

6

29

1.6111111

2.6363636

4.1428571

7.25

9.666667

7

47

1.6206897

2.6111111

4.2727273

6.7142857

11.750000

8

76

1.6170213

2.6206897

4.2222222

6.9090909

10.857143

9

123

1.6184211

2.6170213

4.2413793

6.8333333

11.181818

10

199

1.6178862

2.6184211

4.2340426

6.8620690

11.055556

11

322

1.6180905

2.6178862

4.2368421

6.8510638

11.103448

12

521

1.6180124

2.6180905

4.2357724

6.8552632

11.085106

13

843

1.6180422

2.6180124

4.2361809

6.8536585

11.092105

14

1364

1.6180308

2.6180422

4.2360248

6.8542714

11.089431

15

2207

1.6180352

2.6180308

4.2360845

6.8540373

11.090452

16

3571

1.6180335

2.6180352

4.2360617

6.8541267

11.090062

17

5778

1.6180342

2.6180335

4.2360704

6.8540925

11.090211

18

9349

1.6180339

2.6180342

4.2360671

6.8541056

11.090154

19

15127

1.6180340

2.6180339

4.2360683

6.8541006

11.090176

20

24476

1.6180340

2.6180340

4.2360678

6.8541025

11.090168

21

39603

1.6180340

2.6180340

4.2360680

6.8541018

11.090171

22

64079

1.6180340

2.6180340

4.2360680

6.8541020

11.090170

23

103682

1.6180340

2.6180340

4.2360680

6.8541019

11.090170

24

167761

1.6180340

2.6180340

4.2360680

6.8541020

11.090170

25

271443

1.6180340

2.6180340

4.2360680

6.8541020

11.090170

We can even choose non-integer values for  and  and still get the same ratios.

n

0

0.7

1

9.2

13.1428571

2

9.9

1.0760870

14.1428571

3

19.1

1.9292929

2.0760870

27.2857143

4

29

1.5183246

2.9292929

3.1521739

41.4285714

5

48.1

1.6586207

2.5183246

4.8585859

5.2282609

68.714286

6

77.1

1.6029106

2.6586207

4.0366492

7.7878788

8.380435

7

125.2

1.6238651

2.6029106

4.3172414

6.5549738

12.646465

8

202.3

1.6158147

2.6238651

4.2058212

6.9758621

10.591623

9

327.5

1.6188828

2.6158147

4.2477302

6.8087318

11.293103

10

529.8

1.6177099

2.6188828

4.2316294

6.8715953

11.014553

11

857.3

1.6181578

2.6177099

4.2377657

6.8474441

11.119326

12

1387.1

1.6179867

2.6181578

4.2354198

6.8566485

11.079073

13

2244.4

1.6180521

2.6179867

4.2363156

6.8531298

11.094414

14

3631.5

1.6180271

2.6180521

4.2359734

6.8544734

11.088550

15

5875.9

1.6180366

2.6180271

4.2361041

6.8539601

11.090789

16

9507.4

1.6180330

2.6180366

4.2360542

6.8541562

11.089934

17

15383.3

1.6180344

2.6180330

4.2360732

6.8540813

11.090260

18

24890.7

1.6180338

2.6180344

4.2360660

6.8541099

11.090135

19

40274

1.6180340

2.6180338

4.2360687

6.8540989

11.090183

20

65164.7

1.6180340

2.6180340

4.2360677

6.8541031

11.090165

21

105438.7

1.6180340

2.6180340

4.2360681

6.8541015

11.090172

22

170603.4

1.6180340

2.6180340

4.2360679

6.8541021

11.090169

23

276042.1

1.6180340

2.6180340

4.2360680

6.8541019

11.090170

24

446645.5

1.6180340

2.6180340

4.2360680

6.8541020

11.090170

25

722687.6

1.6180340

2.6180340

4.2360680

6.8541020

11.090170

Even negative values give ratios that converge to the powers of

n

0

-3

1

-2.815

0.9383333

2

-5.815

2.0657194

1.9383333

3

-8.63

1.4840929

3.0657194

2.8766667

4

-14.445

1.6738123

2.4840929

5.1314387

4.8150000

5

-23.075

1.5974386

2.6738123

3.9681857

8.1971581

7.691667

6

-37.52

1.6260022

2.5974386

4.3476246

6.4522786

13.328597

7

-60.595

1.6150053

2.6260022

4.1948771

7.0214368

10.420464

8

-98.115

1.6191930

2.6150053

4.2520043

6.7923157

11.369061

9

-158.71

1.6175916

2.6191930

4.2300107

6.8780065

10.987193

10

-256.825

1.6182030

2.6175916

4.2383860

6.8450160

11.130011

11

-415.535

1.6179694

2.6182030

4.2351832

6.8575790

11.075027

12

-672.36

1.6180586

2.6179694

4.2364060

6.8527748

11.095965

13

-1087.895

1.6180246

2.6180586

4.2359389

6.8546090

11.087958

14

-1760.255

1.6180376

2.6180246

4.2361173

6.8539083

11.091015

15

-2848.15

1.6180326

2.6180376

4.2360491

6.8541759

11.089847

16

-4608.405

1.6180345

2.6180326

4.2360752

6.8540737

11.090293

17

-7456.555

1.6180338

2.6180345

4.2360652

6.8541128

11.090123

18

-12064.96

1.6180341

2.6180338

4.2360690

6.8540978

11.090188

19

-19521.515

1.6180340

2.6180341

4.2360676

6.8541035

11.090163

20

-31586.475

1.6180340

2.6180340

4.2360681

6.8541014

11.090173

21

-51107.99

1.6180340

2.6180340

4.2360679

6.8541022

11.090169

22

-82694.465

1.6180340

2.6180340

4.2360680

6.8541019

11.090170

23

-133802.45

1.6180340

2.6180340

4.2360680

6.8541020

11.090170

24

-216496.92

1.6180340

2.6180340

4.2360680

6.8541020

11.090170

25

-350299.37

1.6180340

2.6180340

4.2360680

6.8541020

11.090170

Yet another connection exists between  and the Fibonacci numbers.  We can use  to write a closed form expression for   Remember  was one of the solutions to the quadratic equation:   There is also a negative solution to this equation.  .

Fibonacci Numbers and Pythagorean Triples

We will conclude this exploration with one more interesting observation about Fibonacci numbers.  We can take any four consecutive Fibonacci numbers and use them to generate Pythagorean triples – solutions to the Pythagorean Theorem: . 

Let .

First we will test this with the first two sets of four consecutive Fibonacci numbers, and then we will determine why this is always true.

                                               

This is the well-known Pythagorean triple (3, 4, 5).

                                    13

This yields the Pythagorean triple (5, 12, 13).

Because A, B, C, and D are four consecutive Fibonacci numbers,  and    We can substitute these values into the equation.

Thus, no matter what values are chosen for A and B, we will get a Pythagorean triple.  This means a spreadsheet is a great means of generating Pythagorean triples.  The following values were obtained from the standard Fibonacci sequence.  The highlighted values are the numbers in the Pythagorean triples.

A

B

C

D

AD

2BC

1

1

2

3

3

4

5

25

25

1

2

3

5

5

12

13

169

169

2

3

5

8

16

30

34

1156

1156

3

5

8

13

39

80

89

7921

7921

5

8

13

21

105

208

233

54289

54289

8

13

21

34

272

546

610

372100

372100

13

21

34

55

715

1428

1597

2550409

2550409

21

34

55

89

1869

3740

4181

17480761

17480761

34

55

89

144

4896

9790

10946

119814916

119814916

55

89

144

233

12815

25632

28657

821223649

821223649

89

144

233

377

33553

67104

75025

5628750625

5628750625

 

When we vary the starting values of A and B, we can generate other Pythagorean triples.

A

B

C

D

AD

2BC

1

3

4

7

7

24

25

625

625

3

4

7

11

33

56

65

4225

4225

4

7

11

18

72

154

170

28900

28900

7

11

18

29

203

396

445

198025

198025

11

18

29

47

517

1044

1165

1357225

1357225

 

 

 

 

 

 

 

 

 

 

1

4

5

9

9

40

41

1681

1681

4

5

9

14

56

90

106

11236

11236

5

9

14

23

115

252

277

76729

76729

9

14

23

37

333

644

725

525625

525625

14

23

37

60

840

1702

1898

3602404

3602404

 

 

 

 

 

 

 

 

 

 

1

5

6

11

11

60

61

 

3721

3721

5

6

11

17

85

132

157

 

24649

24649

6

11

17

28

168

374

410

 

168100

168100

11

17

28

45

495

952

1073

 

1151329

1151329

17

28

45

73

1241

2520

2809

 

7890481

7890481

 

 

 

 

 

 

 

 

 

 

1

6

7

13

13

84

85

 

7225

7225

6

7

13

20

120

182

218

 

47524

47524

7

13

20

33

231

520

569

 

323761

323761

13

20

33

53

689

1320

1489

 

2217121

2217121

20

33

53

86

1720

3498

3898

 

15194404

15194404

 

This exploration highlighted two useful ways that spreadsheets can be used to explore properties of the Fibonacci numbers.  The ability to quickly generate data based on a simple formula allows us to test conjectures and more easily make mathematical connections.

         

 

 

 

Return to Elizabeth's Home Page